第76章 对火星轨道变化问题的最后解释
推荐阅读:下山后,我在民政局门口闪婚京圈首富、[柯南同人] 柯学不易,红桃叹气、小行星、他一直在黑化、事不过三、万古神帝、装O后和联姻对象HE了、金玉满堂、穿到老爸相亲那年、恶毒直男但天然钓系、
作者君在作品相关中其实已经解释过这个问题。
不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”
那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
以下是文章内容:
long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem
abstract
wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.
1introduction
1.1definitionoftheproblem
thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsystem.actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsystem.
amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosystem.
1.2previousstudiesandaimsofthisresearch
inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.
fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.
ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.
inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.
insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.
2descriptionofthenumericalintegrations
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
2.3numericalmethod
weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).
thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.
intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.
weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.
theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).
althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.
2.4errorestimation
2.4.1relativeerrorsintotalenergyandangularmomentum
accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.
relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.
notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.
2.4.2errorinplanetarylongitudes
sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.
3numericalresults–i.glanceattherawdata
inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.
3.1generaldescriptionofthestabilityofplanetaryorbits
first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.
verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentum.(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).
thevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationn+1isshowninfig.4.asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforvenus,earthandmars.theelementsofmercury,especiallyitseccentricity,seemtochangetoasignificantextent.thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.thisresultappearstobeinsomeagreementwithlaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofmercuryonatime-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofmercury.wewillmentionbrieflythelong-termorbitalevolutionofmercurylaterinsection4usinglow-passfilteredorbitalelements.
theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsosection5).
3.2time–frequencymaps
althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.berger1988).
togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastfouriertransformations(ffts)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorlaskar's(1990,1993)frequencyanalysis.
dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelenh.thelenhofeachdatasegmentshouldbeamultipleof2inordertoapplythefft.
eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+t,thenextdatasegmentrangesfromti+δt≤ti+δt+t,whereδt?t.wecontinuethisdivisionuntilwereachacertainnumbernbywhichtn+treachesthetotalintegrationlenh.
weapplyanffttoeachofthedatafragments,andobtainnfrequencydiagrams.
ineachfrequencydiagramobtainedabove,thestrenhofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.
weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.
wehaveadoptedanfftbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofgbytes).
atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+2integration.thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
4.2long-termexchangeoforbitalenergyandangularmomentum
wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.
infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationofthemercury.however,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.
4.4long-termcouplingofseveralneighbouringplanetpairs
letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfiltereddelaunayelements.figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminn+1andn?2integrations.wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.inparticular,venusandearthmakeatypicalpair.inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatmarsshows'itivecorrelationintheangularmomentumvariationtothevenus–earthsystem.mercuryexhibitscertainnegativecorrelationsintheangularmomentumversusthevenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.
itisnotclearatthemomentwhythevenus–earthpairexhibitsanegativecorrelationinenergyexchangeand'itivecorrelationinangularmomentumexchange.wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf.brouwerboccalettipucacco1998).thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).hence,theeccentricitiesofvenusandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsin'itivecorrelationintheangularmomentumexchange.ontheotherhand,thesemimajoraxesofvenusandeartharelesslikelytobedisturbedbythejovianplanets.thustheenergyexchangemaybelimitedonlywithinthevenus–earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.
asfortheouterjovianplanetarysubsystem,jupiter–saturnanduranus–neptuneseemtomakedynamicalpairs.however,thestrenhoftheircouplingisnotasstrongcomparedwiththatofthevenus–earthpair.
5±5x1010-yrintegrationsofouterplanetaryorbits
sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.hence,weaddedacoupleoftrialintegrationsthatspan±5x1010yr,includingonlytheouterfiveplanets(thefourjovianplanetspluspluto).theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span.orbitalconfigurations(fig.12),andvariationofeccentricitiesandinclinations(fig.13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofplutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage.
inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10.
5.1resonancesintheneptune–plutosystem
kinoshitanakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5x109yr.theyfoundthatfourmajorresonancesbetweenneptuneandplutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofpluto.themajorfourresonancesfoundinpreviousresearchareasfollows.inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.subscriptspandndenoteplutoandneptune.
meanmotionresonancebetweenneptuneandpluto(3:2).thecriticalargumentθ1=3λp?2λn??plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2x104yr.
theargumentofperihelionofplutowp=θ2=?p?Ωplibratesaround90°withaperiodofabout3.8x106yr.thedominantperiodicvariationsoftheeccentricityandinclinationofplutoaresynchronizedwiththelibrationofitsargumentofperihelion.thisisanticipatedinthesecularperturbationtheoryconstructedbykozai(1962).
thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp?Ωn,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.whenθ3becomeszero,i.e.thelongitudesofascendingnodesofneptuneandplutooverlap,theinclinationofplutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.whenθ3becomes180°,theinclinationofplutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.williamsbenson(1971)anticipatedthistypeofresonance,laterconfirmedbymilani,nobilicarpino(1989).
anargumentθ4=?p??n+3(Ωp?Ωn)libratesaround180°withalongperiod,~5.7x108yr.
inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(fig.17).thisisaninterestingfactthatkinoshitanakai's(1995,1996)shorterintegrationswerenotabletodisclose.
6discussion
whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.first,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.jupiterandsaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealsolarsystem.thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(itotanikawa1999,2001).whenwemeasureplanetaryseparationsbythemutualhillradii(r_),separationsamongterrestrialplanetsaregreaterthan26rh,whereasthoseamongjovianplanetsarelessthan14rh.thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.jovianplanetsarenotperturbedbyanyothermassivebodies.
thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.however,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsiso(ej)(orderofmagnitudeoftheeccentricityofjupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofo(ej).heighteningofeccentricity,forexampleo(ej)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26rh.thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(;26rh)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span.ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofsolarsystemplanetarymotionisnowon-going.
althoughournumericalintegrationsspanthelifetimeofthesolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics.
——以上文段引自ito,t.tanikawa,k.long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem.mon.not.r.astron.soc.336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”
那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
以下是文章内容:
long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem
abstract
wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.
1introduction
1.1definitionoftheproblem
thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsystem.actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsystem.
amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosystem.
1.2previousstudiesandaimsofthisresearch
inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.
fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.
ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.
inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.
insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.
2descriptionofthenumericalintegrations
(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)
2.3numericalmethod
weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).
thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.
intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.
weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.
theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).
althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.
2.4errorestimation
2.4.1relativeerrorsintotalenergyandangularmomentum
accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.
relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.
notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.
2.4.2errorinplanetarylongitudes
sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.
3numericalresults–i.glanceattherawdata
inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.
3.1generaldescriptionofthestabilityofplanetaryorbits
first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.
verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentum.(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).
thevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationn+1isshowninfig.4.asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforvenus,earthandmars.theelementsofmercury,especiallyitseccentricity,seemtochangetoasignificantextent.thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability.thisresultappearstobeinsomeagreementwithlaskar's(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofmercuryonatime-scaleofseveral109yr.however,theeffectofthepossibleinstabilityoftheorbitofmercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofmercury.wewillmentionbrieflythelong-termorbitalevolutionofmercurylaterinsection4usinglow-passfilteredorbitalelements.
theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsosection5).
3.2time–frequencymaps
althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans.evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf.berger1988).
togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastfouriertransformations(ffts)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps.thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorlaskar's(1990,1993)frequencyanalysis.
dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelenh.thelenhofeachdatasegmentshouldbeamultipleof2inordertoapplythefft.
eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+t,thenextdatasegmentrangesfromti+δt≤ti+δt+t,whereδt?t.wecontinuethisdivisionuntilwereachacertainnumbernbywhichtn+treachesthetotalintegrationlenh.
weapplyanffttoeachofthedatafragments,andobtainnfrequencydiagrams.
ineachfrequencydiagramobtainedabove,thestrenhofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.
weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration.thehorizontalaxisofthesenewgraphsshouldbethetime,i.e.thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n).theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.
wehaveadoptedanfftbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofgbytes).
atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasfig.5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofearthinn+2integration.infig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit.wecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofearthonlychangesslightlyovertheentireperiodcoveredbythen+2integration.thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
4.2long-termexchangeoforbitalenergyandangularmomentum
wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfiltereddelaunayelementsl,g,h.gandhareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass.lisrelatedtotheplanetaryorbitalenergyeperunitmassase=?μ22l2.ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant.non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain.theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually.however,suchasymptomofinstabilityisnotprominentinourlong-termintegrations.
infig.7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationn+2.theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedase-e0),totalangularmomentum(g-g0),andtheverticalcomponent(h-h0)oftheinnerfourplanetscalculatedfromthelow-passfiltereddelaunayelements.e0,g0,h0denotetheinitialvaluesofeachquantity.theabsolutedifferencefromtheinitialvaluesisplottedinthepanels.thelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofnineplanets.thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets.
comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets.thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets.anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales.thiscanbeseeninthepanelsdenotedasinner4infig.7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9.actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationofthemercury.however,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections.
4.4long-termcouplingofseveralneighbouringplanetpairs
letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfiltereddelaunayelements.figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminn+1andn?2integrations.wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange.inparticular,venusandearthmakeatypicalpair.inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum.thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy.thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations.candidatesforperturbersarejupiterandsaturn.alsoinfig.11,wecanseethatmarsshows'itivecorrelationintheangularmomentumvariationtothevenus–earthsystem.mercuryexhibitscertainnegativecorrelationsintheangularmomentumversusthevenus–earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem.
itisnotclearatthemomentwhythevenus–earthpairexhibitsanegativecorrelationinenergyexchangeand'itivecorrelationinangularmomentumexchange.wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf.brouwerboccalettipucacco1998).thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe).hence,theeccentricitiesofvenusandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsin'itivecorrelationintheangularmomentumexchange.ontheotherhand,thesemimajoraxesofvenusandeartharelesslikelytobedisturbedbythejovianplanets.thustheenergyexchangemaybelimitedonlywithinthevenus–earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair.
asfortheouterjovianplanetarysubsystem,jupiter–saturnanduranus–neptuneseemtomakedynamicalpairs.however,thestrenhoftheircouplingisnotasstrongcomparedwiththatofthevenus–earthpair.
5±5x1010-yrintegrationsofouterplanetaryorbits
sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability.hence,weaddedacoupleoftrialintegrationsthatspan±5x1010yr,includingonlytheouterfiveplanets(thefourjovianplanetspluspluto).theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span.orbitalconfigurations(fig.12),andvariationofeccentricitiesandinclinations(fig.13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains.althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofplutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage.
inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10.
5.1resonancesintheneptune–plutosystem
kinoshitanakai(1996)integratedtheouterfiveplanetaryorbitsover±5.5x109yr.theyfoundthatfourmajorresonancesbetweenneptuneandplutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofpluto.themajorfourresonancesfoundinpreviousresearchareasfollows.inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion.subscriptspandndenoteplutoandneptune.
meanmotionresonancebetweenneptuneandpluto(3:2).thecriticalargumentθ1=3λp?2λn??plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2x104yr.
theargumentofperihelionofplutowp=θ2=?p?Ωplibratesaround90°withaperiodofabout3.8x106yr.thedominantperiodicvariationsoftheeccentricityandinclinationofplutoaresynchronizedwiththelibrationofitsargumentofperihelion.thisisanticipatedinthesecularperturbationtheoryconstructedbykozai(1962).
thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp?Ωn,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration.whenθ3becomeszero,i.e.thelongitudesofascendingnodesofneptuneandplutooverlap,theinclinationofplutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°.whenθ3becomes180°,theinclinationofplutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again.williamsbenson(1971)anticipatedthistypeofresonance,laterconfirmedbymilani,nobilicarpino(1989).
anargumentθ4=?p??n+3(Ωp?Ωn)libratesaround180°withalongperiod,~5.7x108yr.
inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(figs14–16).however,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(fig.17).thisisaninterestingfactthatkinoshitanakai's(1995,1996)shorterintegrationswerenotabletodisclose.
6discussion
whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability.first,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets.jupiterandsaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone.higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealsolarsystem.thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(itotanikawa1999,2001).whenwemeasureplanetaryseparationsbythemutualhillradii(r_),separationsamongterrestrialplanetsaregreaterthan26rh,whereasthoseamongjovianplanetsarelessthan14rh.thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets.terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation.theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation.jovianplanetsarenotperturbedbyanyothermassivebodies.
thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets.however,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsiso(ej)(orderofmagnitudeoftheeccentricityofjupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofo(ej).heighteningofeccentricity,forexampleo(ej)~0.05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26rh.thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(;26rh)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span.ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofsolarsystemplanetarymotionisnowon-going.
althoughournumericalintegrationsspanthelifetimeofthesolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace.itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics.
——以上文段引自ito,t.tanikawa,k.long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem.mon.not.r.astron.soc.336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
本文网址:https://www.po18.work/book/61740/16433101.html,手机用户请浏览:https://www.po18.work享受更优质的阅读体验。
温馨提示:按 回车[Enter]键 返回书目,按 ←键 返回上一页, 按 →键 进入下一页,加入书签方便您下次继续阅读。章节错误?点此举报